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SECTION 1

INTRODUCTION AND SUMMARY

Recent requirements for very high resolution imaging systems have

produced a great demand for apertures with high resolution, low sidelobe

levels, and high gain. To achieve the resolutions desired, extremely

large apertures are needed. The realization of such apertures is gen-

erally considered to be either economically or technically infeasible.

Table 1 gives some representative numbers for such arrays. The .iumbers

are astronomically large in many cases. Hence, attention has been

focused on large arrays. Arrays with uniformly spaced elements produce

undesirable grating lobes. For these arrays, there exists a maximum

spacing between elements if the grating lobes are to be removed from

the object. The number of elements required in such uniform arrays would

be very large and in direct proportion to the aperture dimension.

Therefore, the investigation of arrays with a reduced number of ele-

ments (the "thinned arrays"), which possess the desired characteristics

of the full arrays, has been of recent interest.

Arrays with incomnmensurable element spacings usually have aperiodic

radiation pattern functions.. Consequently, the number of elements

required is not directly determined by the aperture dimension. However,

there is no general theory available for the algorithmic design of this

class of arrays. Many of the designs to date have been based on trial-

and-error methods using high-speed computers. But there is never any

assura.tce that any particular trial will produce a successful design.

One class of arrays exists that possesses the desired caatr

istics of high-resolution imaging systems and yet requires surprisingly

few elements to achieve these features. This class, random arrays, is

well established in antenna theory and has been generally applied to

signal-detection applications. The properties of such arrays are

approached from a probabilistic point of view, even though the per-
formance of any particular array itself is not probabilistic. That is,

once the positions of the array elements are determined, the properties

of the random array are completely deterministic. A prime advantage
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of these arrays 13 that predictions on the array's performance can be

made before carrying out detailed computations. Therefore, designing

the array is reduced to playing a game in which the probability of

success is determined to be sufficiently large before any actual evalu-

at'iun of the final array design is attempted. Other advantages of

random arrays are discussed below.

For random arrays, the sidelohe level is closely related to the

number of elements and, to a much lesser degree, to the total aperture

dimension. The resolution, or main beam width, depends on the totalI

aperture dimension; the directive gain is proportional to the number of

elements used if the average spacing is large. Consequently, extremely

high resolution can be achieved with very few elements. On the otherI
hand, for a given number of elements, higher resolution can be obtained

by spread-ing these elements over a large aperture, with the sidelobe

levels remaining substantually the same and the directive gain constant.

We have applied the concept of random arrays to imaging systems to

determine their .zapabilities and limitations for imaging applications.

To the best of our knowledge, this is the first demonstration of the

utilization of thinned random arrays in imaging systems. Computer

simulation studies have been carried out here for incoherent, partially

coherent, and coherent imaging. These investigations were performed

using various conditions, including variable signal-to-noise ratio (SIN)

and phase aberration in the imaging system, with monochromatic and poly-

t chromatic illumination of the object. However, no attempt was made to

The results show that good quality images can be obtained for

rant.~om arrays with very few elements, even down to only 6% of the

number of elements of a uniform full array of 4096 elements. (The

number of elements in the full array is equivalent to the number of A

elements resolved by the full array in its field of view (FOV)). These

results hold for a low (e.g., > 3) S/N and a high-intensity background

in the image. For broadband polychromatic incoherent imaging, the

number of elements can be even further reduced. In addition, this



image quality can be achieved by many distinct random-array configurations.

The image resolution can be maintained as the number of array elements

is reduced if the aperture dimension is fixed for each random thinned

array. The quality of the image degrades, as shown by the appearance

of higher (random) background levels as the number of array elements

is reduced. This is a manifestation of the increased sidelobe level of
the random array as the number of elements is reduced. For a given

number of elements, the simulation results exhibited an improvement

in image resolution as the number of elements was spread over larger

aperture dimensions. The overall background levels in these images

remained essentially constant., These enc.uraging results, whibh were

obtained without utilizing any averaging or interpolation post-processing

techniques ia Lhe aperLure plane for image enhancement, lead us to

believe that similarly impressive performance can be achieved in

practice.

We have studied the effects of background, S/N,and phase aberra-

tions (such as those caused by turbulence and any figure disposition

in the case of incoherent imaging). For coherent imaging, the effects

of speckle were examined, and a method of speckle elimination was

studied. The determination of the dependence of the maximum thinnitag

factor possible to retain good quality in the image was investigated

as a function of the pertinent parameters, including the total number

of elements and S/N.

To present a comprehensive exposition of our results, we have

incorporated in this report the principle results of the previous

reporting periods along with the two studies performed in this period.

In this year, a study was made of the use of broadband polychromatic

radiation incoherent imaging. Partially coherent imaging was modeled

as well, and computer simulations were performed.
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SECTION 2

TECHNICAL DISCUSSION

A. IMAGING CONCEPTS

The imaging process may be viewed in two complementary ways.

Although mathematically equivalent and related by theorems of Fourier

transformation, one view or the other reveals special insights and

simplifications, depending on the particular circumstances. We may,

for example, view the imaging process as a convolution of the object

field and the radiation or antenna pattern of the aperture, as is the

case for coherent imaging. If the aperture is a large lens or collect-

ing mirror, then its radiation or diffraction pattern, which is the

Fourier transform of the aperture configuration, will be a sharply

peaked function in angular extent with only small subsidiary sidelobes.

Convolving this pattern with the object field produces an image field

the quality of which depends on the strength and degree of sharpness

of the mainiobe and the weakness and disposition of the sidelobes.

Alternatively, we may view the imaging process by considering the

Fourier transformation of the object into its spectrum of spatial fre-

quencies. If only the intensities of the.image and object are of

interest, then the Fourier transformation of the intensity representa-

tion of the object will appear in the far field at the aperture, or

entrance pupil, of the imaging instrument as the (complex) visibility

pattern; it is sometimes called the partial coherence transform vis4-- vis

the Van Citert-Zernike theorem.* This coherence transform is sampled

to some degree in the aperture plane, depending on the nature and size

of the collecting aperture. Thb amplitude of the transform is the

classical visibility of fringes as a function of spatial frequency given

by the separation of the aperture elements. The phase of the trans-

form is the spatial phase of these fringes referred to the optical axis

or focus of the system. This sampled function is then inversely

*This theorem is the spatial analog of the Wiener-Khintchine theorem
relating the power spectrum and temporal correlation for stationary
processes.
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transformed to form the image. The quality of the image, from this

point of view, depends on the degree to which the irradiance of the

object has been sampled in the aperture plane and the disposition

of the sampling elements. Insufficient and regular sampling of the

aperture will produce an image not only lacking in all the correct

details at the missing (i.e., unsampled) spatial frequencies, but will

also produce vivid spurious image information caused by large uncom-

pensated Fourier terms.

To amplify the description of imaging and to cast these concepts

in more concrete terms, it is instructive to put the resulto in more
formal mathematical terms. The mathematical representations of the
imaging process take especially simple form in the limiting cases of

completely coherent and completely incoherent imaging. These cases

are of practical interest as well, for they are good approximations

to conditions encountered most often. However, we did not limit our

study to these cases.

1. Coherent Imaging

Coherent imaging systems are linear in complex field amplitude.

From diffraction considerations, the field distributions of the image,

U (xy), and object, U (u,v), are related by the convolution integral
1 0

U (xy) h(x-u, y-v) U (u,v) dudv (1)
obJ

where h(x-u, y-v) is the impulse response of theimaging system. A

generalized schematic of an imaging system is shown in Figure 1. The

pupil function P(x',y') has the property that

1 within the aperture configuration
P(xV',y') 10 elsewhere. (2)

This function accounts for the finite extent of the pupil, or aperture,

of the imaging system. The system impulse function is directly related

14



to the pupil function by a Fourier trmnsformation:

h(x,y) ff P(•,) 6 -i2T(xc+Y8) dadO. (3)
aper

Thus, for a given wavelength, the imaging properties of a system are com-

pletely determined by the pupil function, or aperture, of the imaging
system.

wo quadratic phase terms that normally appear in Eq. 3 have been

neglected in the diffraction fozmulation of the imaging system. These

terms convey phase curvature information and can be dropped directly if

imaging is considered to *ie between two spherical surfaces. For plane

surfaces, these terms can also be neglected. The justification is

based on the fact that the resultant image is usually sensed with

detectors that respond to intensities. One of these quadratic phase

terms only modifies the phase distribution of light and cannot affect

the resultant detected image intensities. The second quadratic phase

term can be neglected also if theimaging system maps neighboring points

in the object plane onto neighboring points in the image plane. This

condition is satisfied for most cases where the object is of small

angular extent. Mathematical details of these concepts can be found in

J.W. Goodman, Introduction to Fourier Optics.

4058-2

OBJECT APERTURE IMAGE
PLANE PLANE PLANE

(PUPIL FUNCTION)

Figure 1. Schematic of generalized imaging system.
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The convolution integral, Eq. 1, can be conveniently recast into

its spatial frequency spectrum representation by Fourier transformation.

Denoting the Fourier transforms of U and h by i and 1, respectively,

the Fourier representation oZ Eq. I is

U (f fy= h_(f fy U(fx fy , (4)
i xy X y o x'y

where f and f are the Fourier spatial frequency components. Here,
x y

h(f ,f ) is known as the coherent transfer function (CTF). Recalling
x y

from Eq. 3 that h(x,y) is already the Fourier transform of the pupil

function P(x,y), then

h(fx,fy) P(fxf) , (5)

and Eq. 4 becomes

Ui(fxfy P(fxfy) f o(f 1 fy) (6)

where magnification and image inversion have been ignored. The rela-

tionship between the coherent transfer function h and the pupil func-

tion (or aperture) P is a di.rect and simple one. In the Foirier

transform representation, therefore, the pupil function (or aperture)

samples the Fourier spatial frequency components of the object trans-

form field. The image can be reconstructed from the sampled frequency

components by an inverse transformation of Ui(f ~fy).

As Eq. 6 shows, diffraction effects of the imaging system are

manifested by the finite extent of the pupil function. That is, high

spatial frequency components of the object transform field are "cut

off" or not sampled. From another point of view, the high-frequency

components of the object field diffract to a greater angular extent
than the low-frequency components: they are not "intercepted" by the

finite aperture of the imaging system. To reconstruct only the high-

frequency content of the object (e.g., the edge content), it would be

16



11
necessary to sample only the high spatial frequency components of the

F object transform field. In this case, an annular aperture would be

adequate.

2. Incoherent Imaging

Incoherent imaging systems can be viewed from the same approach as
! • described above. For such incoherently illuminated objects, the imag-

ing system is linear in intensity distribution. From diffraction

considerations, and representing the image and object field intensities

by I (x,y) and I (u,v), respectively, these field intensities are

related by the convolution integral

I (x'Y) = l h(x-u, y-v)12 Io(U,V) dudv ,(7)

obj

where h(x-u, y-v) is again the impulse response of the imaging system.

By forming the intensity of Eq. 1 and imposing the condition of statis-

tical independence (incoherence) on the phasor amplitudes across the

object, Eq. 7 can be derived from Eq. 1. In general, the statistical

nature (or coherence) of the object phasor amplitude determines the

form of the imaging equations.

The image field intensity is also determined by the system impulse

response h(x,y), which, in turn, is related to the pupil function

P(x',y') by Eq. 3. However, the mapping in this case is carried out I
by Ih(,$,)J , the magnitude squared of the system impulse function.

The function 1h known as the point spread function (PSF), gives,

for finite apertures, the degradation of a 6-function (point) source

through the imaging system.

Because of the convolution form of Eq. 7, it can be recast into

its spatial frequency spectrum representation aloo. Denoting the
2

Fourier transforms of I and Ih2 by I and H, respectively, the Fourier

representation of Eq. 7 is

S[(fx~f y) A(f x fy o (fX, f y) (8)

17



The function H(fxfy) is commonly called the optical transfer function I
(OTF) of the incoherent imaging system, and its modulus IH(fx,fy)I is

known as the modulation transfer function (MTF). In th. Fourier trans-

form representation, the OTF acts as a complex weighting factor in

mapping the Fourier spatial frequency components of the object field

intensity into image Fourier spatial frequency components. The image

can thus be reconstructed from the mapped frequency components in
transform space by an inverse transformation of •i(f 'fy)

Both the CTF, h(fx,f y), and OTF, H(f x,f y), involve the system

impulse response h(a,a). There exists a specific relationship between

them. The autocorrelation theorem can be used to show that

H(f x 'f y ff h(aa) h*(Ccrf x, O+f y dado (9) I

aper

and thus that the OTF is the autocorrelation of the CTF. Using Eq. 5,

the above relationship can be reduced further to show that the OTF

H(f x,f y) is the autocorrelation of the pupil function (or aperture)

P(x' ,y' ):

'(fx~y ff r'ct,8) P*((X+fx W f) dad$ (10)

x y ~aper X

There is an interesting and important geometric interpretation to the

autocorrelation function of the aperture distribution. It counts or

measures the distribution of all element pairs, discrete or differen-

tial, as a function of pair separations, independent of the absolute

position of the elements. This may be readily seen by considering a

one-dimensional array of discrete elements irregularly disposed on a

regular lattice. The first point (zero separation) of the autocorrela-

tion function is the result of multiplying the array with itself, and

merely counts the number of elements in the array. Displacing the

array over itself by one unit produces overlaps wherever there were

unit separations in the array itself; on multiplication, the number of

18



pairs of unit separation is counted. Similarly, the larger displacements

measure the existence of larger separation pairs. Since the separation

of a pair exists in spatial frequency space, the OTF for incoherent light

can be vicwed as a weighting function with a modulus equal to the number

of pairs of elements at each spatial frequency.

3. Partially Coherent Imaging Transfer Function

The concept of a linear system impulse response can still be used,

even in the case of partially coherent imaging, althcugh its representa-

tion is somewhat more complex. Recalling the definition of the mutual

coherence function r(xlX 2 ,tlt 2 ) as the cross correlation of the fields

at U(x,t) and U(2,t2), and assuming the fields are stationary in

time, r may be written as a function of difference in time T - t1 - t 2 :

r(x 1 ,x 2 ,T) <U(x 1 , t+T) U (x 2 ,t)> (1i)

where the bar notation (xi) indicates a two-dimensional spatial vector

(xi,Yi). The coherence function satisfies the wave equation and
therefore propagates, as does light itself, with the effects of diffration.
As a result, the Fourier components of the coherence function for each

carrier frequency at the image may be related to that at the object by

an impulse response function not unlike that for fields themselves:

xx = (x 2 -u 2 , h r(UlU2,) dUldU2  (12)

object

where r(w) is the Fourier transform of F(T).

Assuming the quasi-monochromatic approximation

I'(Ulsu2 ,W) r(uf ul2,0) 6(w - W) , (13)

19



we may write, after retransformation and simplification of the integral,

Fxx2) eiWT h (Xl-Ul, •)h* -- 2 -- -- --d~du"9x --IT) - (x2-u, w)JrJJ w) w) dU ,(14)

object

where w is the mean carrier frequency. This relates the mutual coherence

of the object and image. Since the intensity in the image equals

r(xl,Xl,O) of the image, we way write

I (xl) - f f h (xl-U, w) h(X 2 u2 w) r(u1,u 0) duld 2  (15)I(xl2-u2P I)] u2 15

object

where the bracketed quantity may be considered to be the ivrpulse response.

For numerical or experimental analysis, the image intensity can be generated

from Eq. 15. Equivalently, for a given form of r in terms of the field

or intensity, Eq. 15 can be written entirely as a linear superposition

of object mutual intensities. r(ulU2,0) is sometimes called the mutual

intensity J ,u 2 ).

'7 Particular explicit models of the coherence "'(ulU2 ) of the object

fields allow particular development of the image intensity I(xl) in

terms of the object fields or intensities. Of course, Fourier trans-

forming the impulse response relation (Eq. 15) by the convolution

theorem recasts it into the form of a linear transfer function. Four-

dimensional convolution or Fourier transforms on sizable images will

exceed the capabilities of most computers.

To simplify our computer calculations, we consider an optical system

with transmission function for mutual intensity K(ux) Using scale-

normalized coordinates where the object point and its Gaussian image

have the same coordinate numbers, the transmission of the mutual intensity

is given by:

I (Xlx2) ffffJo(U,'U2 K(ul,Xl) 1K*dd2,x2) ulu 2  (16)
object

20 •,
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V, T

A second major assumption we will make, besides monochromaticity, is
that the object is small enough to form an isoplanatic region. In this

case, the transmission function K is a function only of the differences

in coordinates, for example, K(x - u)Vand not of the coordinates them-

selves. Then Eq. 16 becomes

JI (xlX 2) " Jo(ul,u 2) K(xl-uI) K*(x 2 -u2) duldu2  • (17)

object

This relationship is a convolution and we can apply the convolution

theorem to the Fourier transforms of the parameters to obtiLn

J(fg;f',=') .tf,.g;fg') k(fg) K (18)

The transmission of mutual intensity is seen to still be a four-

dimensional linear system. Note also that the Fourier transforms are

four dimersional;

The P•bove formulation is simple in form, but still leads to signifi-

cant problems in terms of implementation in digital image processing.

For example, in our simulations the smallest basic image is represented by

an array of 128 x 128 pixels. To represent the mutual intensity for this

image would require 2 complex numbers, which is far in excess of

available storage. Also, computing the four-dimensional Fourier transforms

for such an image is computationally prohibitive, even using fast Fourier

transform techniques.

To mitigate the data storage problem, we use the degree of

coherence, p, defined by

(UuJ(UU 2 ) (19)

To understand how this parameter can help to simplify the problem,

consider the case of partial coherence ailsing from a uniform extended

incoherent illumination source. By the VanCittert-Zernike theorem, if

the distance between the points (ul) and (u2) is small compared to the

21



distance to the source, the degree of coherence is given by the normalized

Fourier transform of the source intensity distribution. Thus, for a -

Gaussian source, p will be Gaussian. For a square source, it will be the

two-dimensional sinc functions; for a circular source, it will be the

Bessel function of first kind and first order.

Basically then, the degree of coherence of the illumination on the

object will be a function only of the difference in coordinates for those

cases of interest. Thus the mutual intensity of the object can be

written

J- -P(U - ) V(IOMCP A 7'1) . (20)

That is, we can represent the mutual intensil tes by two two-dimensional

functions: V and I.

The problem of computing four-dimensional FFTs remains. If Eq. 20

is examined, we see that this representation has terms that are separable

by points (the'intensity function), and it has a term U that is normally

LIL separable by coordinates (as, for example, with Gaussian or sinc forms for

the degree of coherence of the illumination). If the degree of coherence

would be approximated by a function that were totally separable in all

coordinates, then Eq.. .20 could be separated by points into a product of

two two-dimensional Fourier transforms which would then split into a product

of two two-dimensional transforms, which can be computed easily. Extending

this approach, we looked for an approximation for the modulus of p that was

a sum of totally separable terms and was a sum only of the absolute values

of the difference in terms. To this we added a complex phase that was

"( separable by points, as are the intensity terms in Eq. 20. In each axis,

the functions we selected for a cosine series representation of p are of

the form
N

SAn cos 2n (U 1 - 2 ) , (21)

n=0

-•. 22
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where a is a parameter that determines the coherence radius. For example,

if a is zero, the functions yield coherent imaging. Many realistic
coherence functions can be well represented by such a cosine representation.

Note that this function is separable by expanding the terms using

trigonometric identities and that it is symmetric in u-1 and u2 " This

results in a representation for the mutual coherence of the form

- M f(U 1 )fn~u) eil) CTtp ~~ 2) VR(`u2) (22)
J (u1,u u f()eu

n-l

Since the optical transmission function also separates, as it is a set of

ones and zeros distributed over the aperture, the entire transmission as

given by Eq. 18 also separates into a sum of separable functions.

Appendix C gives an example of a six-term cosine series representa-

tion of P (Eq. 21) and of the resulting 121-term separable representation I
(Eq. 22). The result is plotted in Figure 2.

B. THINNED ARRAY REQUIREMENTS FOR IMAGING

The two viewpoints of imaging discussed above (i.e., the convolu-

tion integral and transfer function representations) permit a revealing

approach for the application of thinned arrays to imaging systems. To

achieve high resolution in the image, the high spatial frequency content

of the object must be maintained. Referring to Eq. 6 for the coherent

case, we note that a large aperture is required to sample the high

spatial frequency content of the object transform field. Relating this

requirement to the convolution integral representation (Eq. 1) and

recalling the relationship of Eq. 3 between the system impulse function

h(a,8) and the aperture P(x',y'), it is seen that a large aperture

implies a sharply peaked system impulse function with low subsidiary

sidelobe levels. *In this case, the contribution to the image field
intensity distribution will be given mainly by the sharply peaked main-
lobe of the aperture, with relatively small contributions coming from

the low-level sidelobes in the convolution process.

For th.! incoherent case, similar Interpretations can be given,

although the aperture (or pupil function) P(x',y') appears now in a less
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direct way through the system impulse function lh(a,8) l 2 , which repre-

sents the received power distribution of the array pattern. Again,

referring to the transfer function representation (Eq. 8) and recalling

the autocorrelation relation of the aperture to the OTF H(f ,f ), Eq. 10,

it is seen that high-resolution images require detection at large sepa-

rations in the spatial frequency plane. This translates again into a

largc aperture. Viewed from the convolution integral diffraction point

of view,Eq. 7, the system impulse function (or Point spread function)

(hi2 must possess a sharply peaked mainlobe with relatively low level

sidelobes. In such a case, the subsidiary sidelobe contributions will

not be sigi icant in the convolution integral and therefore will not

appreciably degrade the image.

As pointed out in Section 1, high-.resolution imaging systems may

be infeasible because of the large apertures required. The necessity

of utilizing a much smaller number of elements to accomplish the

requirements of the full aperture is obvious. Stated most simply, the

task is to design thinned arrays that possess the desired characteristics

of large apertures for high-resolution imaging applications: sharply

peaked mainlobe, low-level sidelobes, and high directive gain.

One obvious way of reducing the number of elements required by a

full array while still recovering the total information content of the

object is to impose the sampling theorem. Sampling in the aperture

plane with a periodic array of receiver elements reproduces an image

of the object that is replicated at a distance inversely proportional

to the sampling spacing. Spacing the sampling locations at the reci-

procal of the object dimension and scaling appropriately for wavelength

and target range cause the replicas to just touch. This is the sampling

interval dictated by the sampling theorem. Spacing at finer intervals

spreads the replicas farther apart, thereby reducing the so-called

aliasing effect. However, this is achieved at the expense of requiring

more array elements, while not increasing the information content of

the image. By truncating the sampled space, each replica has the edge

ringing that even a full diffraction limited finite aperture would

suffer.
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These properties can be demonstrated by defining the convenient

sampling function commonly called the comb(x,a), which is IaIE6(x - na).

The comb samples a function at the values x - na when it is uultiplied

by that function. In addition, convolving the comb with a function f(x)

replicates that function at the interval a:

(l/a)comb (x,a) * f(x) - Ef(x - na),

where, for convenience, 0 represents convolution. The replicas may

overlap depending on the extent of the function compared to the inter-

val L. The Fourier transform of a comb is another (reciprocal) comb.

As may be recalled from the relationship between grating periodicity

and grating lobes or orders in diffraction theory, the Fourier transform

of comb (x,a) is

comb ', E E6(x' - n/a)S a,

By the convolution theorem, if a sampled function is Fourier transformed,

then a replicated transform of the function is produced:

I Fourier transform ofcob ', 7(x') f(x) 0 comb(x,a)

Because of the reciprocal nature of the transformed comb, the closer

the original samples, the farther apart are the replicas in the convolu-

ted transform. If an object f(x) is bounded at x , then its replicas

will just touch if the object transform F(x') is sampled at a = i/xax.
max

Finer sampling of the object's transform ?(x'" spreads the replicas

apart. This may be vtewed, in the case oZ the imaging problem, as

spreading apart the grating lobes (the convolution comb) of the aperture

array (the sampling comb). Limiting the required infinite number of

samples needed for exact reproduction of each replica to a sample of

finite extent distorts the reproduction in exactly the same way as does

a truncated full aperture (i.e., continuous sampling). It produces all

the well known distortions anu edge "ringing" of diffraction by a trun-

cated aperture. The number of sampling points required equals the
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number of resolution elements seen on the object. For the coherent case,

the number of sampling points is, in fact, the number of elements in the

array; for the incoherent case, each sampling point is derived from a

pair of elements. N elements provide N(N-l)/? pairs including possible

redundancies.

In determining the beat thinned array configurations for high-

resolution imaging, the vast amount of establinhed analysis of antenna

array theory can be fruitfully applied to imaging systems. In particu-

lar, the concept of random arrays appears to be an optimum approach to

this problem. Although random arrays have been analyzed in detail for

use ini microwave antenna theory, their uti.ization h&.s been restricted

mainly to signal detection in the microwave region. To the best of our

knowledge, their application to imaging systems has not been explored.

The properties of random arrays and their superiority for high-

resolution imaging applications are discussed in the next section.

C. THINNED RANDOM ARRAYS

As discussed previously, the problems associated with the implemen-

tation of high-resolution image. systems (whether full arrays, uniformly I
thinned arrays, or algorithmically designed thinned arrays) may be

alleviated by using thinned random arrays. Random arrays offer distinct

advantages over conventional arrays not only in their ability to

accomplish the objectives of the imaging system with many fewer elements,

but, perhaps equally important, also in their ability to predict the

of the properties of random arrays have been investigated by Lo as they

apply to antenna theory. Some essential results of this work are repro-

duced in Appendix A. Although this theory has been well developed for

antenna applications, its usage in imaging systems has not been explored

(as evidenced by a search of the published literature). The many attrac-I. tive advantages of this class of thinned arrays are discussed below as

they apply to high-resolution imaging systems.
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Random arrays can achieve high resolution, low sidelobes, and high

directive gain with only a small fraction of the number of array ele-

ments normally required by uniform arrays to accomplish the same objec-

tives. Furthermore, the fraction of reduction possible (i.e., thinning

factor) becomes more dramatic as the number of elements normally required

in the uniform array increases. For this class of arrays, the sidelobe

levels are closely related to the number of elements used in the array

and, to a much lesser degree, to the aperture dimension. Steinberg has

concluded that the peak sidelobe level is linearly dependent on N, the

number of array elements, and only logarithmically dependent on the

aperture dimension. Therefore, for a given number of elements, higher

and higher resolutions can be obtained by spreading these elements over

a larger and larger aperture; the sidelobe levels would remain

substantially the same while the mainlobe is narrowed proportionately.

On the other hand, if the array aperture size is fized, the required

specifications of the array can be attained with many fewer elements by

using random arrays. As few as 15 elements will give good agreement to

theory under c, rain conditions.

Equally important, the question of the successful realization of

a design to prescribed specifications must be considered. Since no

general theory exists for the algorithmic design of aperiodic arrays to

meet prescribed performance levels, the results must necessarily be

obtained by a trial-and-error procedure, even with the aid of high-speed

computers. Contrast this with random arrays, which give an a priori

probability of success in meeting design specifications, The probability

of success is determined before any detailed computations are carried

out.

Although the properties of random arrays are approached from a

probabilistic point of view, the performance of the array is not

probabilistic. The performance of the array is completely deterministic

once the disposition of the array elements has been decided. Thus, in

this approach, the design of an array is reduced to playing a game of

chance, for which the odds in favor of success could be designed to be

overwhelmingly in our favor. For one-dimensional arrays, experimental
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verification of these characteristics have been made cn antenna patterns

in the microwave region by Lo and Simcoe. The agreement between experi-

ment and theory was remarkable. Similarly, Steinberg has compared the

peak sidelobe levels between random arrays and algorithmically designed

aperiodic arrays. Specifically, he compared 70 algorithmic arrays with

170 random arrays for the distribution of their peak sidelobes. He

found that both distributions were nearly log normal with the same

average and median values. However, a crucial difference existed in

their standard deviations. The standard deviation of the random array's

distribution was found to be approximately half that of the algorithmic

array's. Thus, "the compactness of the rardom distribution almost

guarantees against selection of a random ar.-ay with catastrophically

large peak sidelobes."

Other significant advantages exist for random arviys. Because many

fewer elements are required in one mode of application of random arrays,

the rate of transmission of information from such arrays would be less

than that required for full or uniform arrays, thereby reducing the
bandwidth of the transmission. The tolerances on the exact disposi ion

of the array elements need not be very stringent for random arrays to

achieve the design specifications. Recognizing the fact that the sidelobes

of random arrays are disposed at random locations relative to the mainlobe,

there exists a very simple scheme of image enhancement to suppress the

spurious background levels caused by the sidelobes. By averaging the

reconstructed images obtained from different random array configurations,

the background levels can be suppressed as i/A, where M is the number of

images used for the averaging process. The different array configurations

can be achieved through the use of reflector elements placed at various
locations, and the signals from these reflectors can be transmitted to the

receiver elements through a switching sequence. Finally, by the very

nature of tha random array concept, the performance of these arrays is

not very susceptible to individual array element failures or destruction.

Subset' of larger random-array -onfigurations will perform adequately

without catastronhic effects. This graceful degradation is shown in the

computer simulation results in Section 2.D.
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The incoherent OTF uf the thin random array, which can be calculated

by its autocorrelation, will have very few redundant vector spacings

(see Figures 5, 7, and 8). There are N(N-l)/2 vector spacings produced

by N array elements. For -.ncoherent imaging, these spacings in autocor-

relation space are the spatial frequency sampling points. The OTF

measures the existence and number or redundancy of these samples as a

function of spatial frequency. If it were possible to sample fully and

have no redundancy at all, then it would require approximately only 2/N

array elements to have N desired unique samples. The full array of N

elements can distinguish N unique resolution elements in its FOV. This

may be seen by noting that the FOV of the array is determined by the

diffraction angle of the array element and is inversely proportional to

the element dimension while resolution is proportional to array dimen-

sion. For example, for a 4096-element full array, only r2_i 91 elements

or 27N' 2% of the full array would be required for complete sampling

were it not for occasional redundancies and missing spatial frequencies.

More elements are needed to make up the deficiency. In one dimension,

there are only a very few nonredundant arrays possible. In two dimen-

sions, it is impossible, in principle, to have a nonredundant array that

fills the autocorrelation space of the array. In our studies for mono-

chromatic imaging, we have found it necessary to employ random array

elements only three times more nuwerous than this theoretically

unattainable nonredundant design number. For polychromatic imaging (as

explained below), only 1.5 times more was needed. Thus, thinned random

arrays can automatically perform low redundancy sampling.

The above discussion has concerned monochromatic or quasi-

monochromatic radiation. For polychromatic incoherent imaging, even

fewer elements are needed in the thinner array to get a good sampling of

the spatial frequency plane. Each array element pair defines or measures

a different spatial frequency for each different wavelength, so many new

spatial frequencies are sampled as the bandwidth is increased. If the

object does not have a pathologic spatial frequency-"color" relationship,

polychromatic imaging with a thin random array will be superior to

monochromatic. Our computer simulations bear this out strikingly.
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Another clacs of arrays may be specially constructed to be minimally

redundant or even nonredundant and compact up to a maximum spatial frequency

that is, however, much less than that given by the maximum dimension of the

array (see Figure 10). This class of arrays shares some properties with

random arrays, but, since they are generated algorithmically, it is not

proper to call them random. These two classes of arrays can be relatively

immune, in a special sense, to phase aberrations.

To see how this immunity may come about, consider a pair of aperture

elements at a fixed spacing that defines a certain spatial frequency, f,

as the elements of an interferometer producing fringes of a certain

"visibility." The MTF of the aperture is a synthesis-oi the visibilities

of all such pairs for all frequencies. Adding an additional redundant

pair at a frequency f, in the absence of phase distortion, always

enhances the HTF at that frequency. But consider an additional pair at

f translated somewhere in the aperture where it suff rs a relative

space variant phase distortion due to the atmosphere or distortion in

figure. It still, as a pair, produces fringes of the same visibility

although the fringes are shifted. That is, they are shifted in phase.

Synthesizing this pair with the original pair now produces a lesser

resultant in the MTF than it would in the absence of distortion and

produces possibly even a reduction over that produced by the single pair.

On the average, assuming random phases, the growth of the MTF, before

normalization, for N contributing pairs of elements would be as in random

walk (i.e., proportional to A). But, since the normalization at zero

frequency reduces the entire transfer function by ./N, the net result is

a l1/A reduction in the MTF at that spatial frequency. For nonrandom

phase disturbances, the MTF may become very small, or, in some cases,

negative. Clearly, nonredundant or migimally redundant arrays would not

suffer significantly from these problems. Radio astronomers have been

interested in this possibility. It remains to be decided by experiment

whether, in the presence of space variant phase distortion, it is more

desirable, with respect to given image quality criteria for given

classes of images, to have the arbitrary sampling of space varying phase

in the thin array rather than to have tue average but distorted phase in
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I
the full array. One such comparison experiment is described in

Section 2. E. 2.

D. SIMULATION PROCEDURE

out for the incoherent, coherent, polychromatic incoherent, and parcialy

coherent cases. A modular software package was designed for use on the
simulation studies. This approach was taken to provide a flexible single

executive control program that would simulate these cases while allowing

optional system parameters to be introduced as needed. These optional

system parameters include Gaussian or Poisson noise, atmospheric turbulence,

aperture configuration, and percent thinning factor in the thinned random

arrays. Additionally, the output format of the reconstructed image and

pertinent intermediate data files can be chosen to be in floating point

or packed integer arrays,, the latter with or without a header. A block

diagram of the simulation software package is shown in Figure 3.

The simulations are based on the Fourier representations of the

incoherent and coherent imaging process, shown by Eqs. 4 and 8. The

basic components of the simulation are a Foiirier transform of the

digitized object array (i.e., the input image), OTF corresponding to

either the incoherent or coherent case, and an inverse transform of the

product of the above two components to reconstruct the object (i.e.,

the reconstructed image). Additional components of the simulation are

incorporated, as needed, to determine the influence of system parameters

on image quality. The sequence of operations that takes place in theJ

simulations is described below.

For the coherent imaging case, a random phase of range 0 to 2w is

first multiplied on a pixel-to-pixel basis to the digitized input image.

This simulates the effect of speckle, which appears in coherently

illuminated objects. The transformation of the input image to the far-

field, or aperture, plane is accomplished by taking a fast Fourier trans-

formation of the input image. At this point, an aperture configuration

is generated that consists of a binary pattern of regular or random array

32

_ _ --me,



KA

SM

18 UIs Z- w

U. 1 . I

0- ILL
41

LU0

o LL

0

to

5w'-0

< 0 0

IC
2ZL 0

CLLI c0
< Z co

(D LUcc -

CC - a



elements. Examples of regular And random array patterns are shown in

Figure 4. The patterns are represented li binary form, with bright pixels

corresponding to a value of 1 and dark pixels to a value of 0. A value

of 1 in the aperture configuration represents a point where an antenna

element in the array exists, and a value of 0 represent5 the absence of

an antenna element. The aperture plane spatial frequencies art sampled

only at those locations where an antenna element exists (i.e., where the

antenna configuration is represented by a 1 in the binary array). The

product of the Fourier transform of the input image with the aperture

configuration, taken on a pixel-by-pixel basis, then produces the Fourier

representation of the reconstructed image. Finally, an inverse Fourier

transform of this product array produces the reconstructed image, as

imaged with the corresponding antenna array configuration.

For the incoherent imaging case, there exist two major differences

in the simulation proc(dure. First, there is no complex random phase
associated with the input im3ge beecause an incoherently illuminated

object produces only an intensity distribution across the object. All

phase information is suppressed. The fast Fourier transform is taken

with respect to the intensity distribution of the input image only.

Second, the OTF for the incoherert case is no longer a binary array

representative of the antenna configuration above. For incoherent

imaging, the OTF is derived by taking a Fourier transform of the aper-

ture configuration, then a complex absolute value squared of this

Fourier transform, and finally a second Fouzier transform of this func-

tion. In coordinate space, this is equivalent to taking an auto-

correlation of the aperture configuration. Thus, the spatial frequencies

in the aperture plane are sampled by pairs of antenna array elements,

with the sampled spacial frequencies represented by vector distances

between all possible pairs of elements in the array. Thus, depending on

the aperture configuration, redundant sampling is likely to occur. With

the exception of the above two 4ifferences, the simulation scheme for

coherent and incoherent imaging is identical.
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2
The incoherent MTF of a full 64 square aperture is sliown in Figure 5.

Note the high peak (large redundancy) plotted in the center of the pattern

at zero spatial frequency and the general fall-off until the aperture-

limited frequency is reached. The PSF of this full square array is shown
2

in Figure 6 and exhibits the familiar sinc behavior. For comparison,
2

the YTF of a random array of 12.5% of the 64 elements is shown in

Fipure 7(a and b). Only the central is plotted there. Note tLat,

except for the central peak at zero frequency, the spatial frequency

plane is almost fully uniformly sampled with the low redundancy.

Although not shown here, the sampling continues to the boundary. The

MTF of a 100-element random array (2.44%) is shown in Figure 8 plotted
2

in slightly more than one quadrant (80 ). Sampling to the boundary is

evident here. The PSF of the 12.5% random array is shown in Figure 9.

It has a central peak width almost identical to the central peak width of

the full array and many additional side peaks of small magnitude.

Figure 10 shows the MTF of a small 25-element algorithmically designed

array. The MTF is compact and nonredundant up to a small frac-

tion of the frequency domain defined by the full aperture. A more com-

plete sampling is impossible in principle. For niiuimal redundancy with

almost complete sampling, the random array provides an effective design

cion. An illusion makes the region near the center appear to be

aS

We have simulated polychromatic incoherent imaging by the process of

averaging or overlaying several monochromatic images, each representing

a dift rent wavelength. In the simulation, different spectral compo-

nentr !ere modeled by different overall aperture dimensions. This is

legitimate because, in the far field of diffraction, wavelength and

aperture size scale directly. For example, if a full aperture of 64 x 64

elements represents 4096 resolution elements at a certain wavelength, then

a smaller size 32 x 32 aperture correctly represents the smaller 1024

resolution elements that would obtain from the original 64 x 64 ap'erture

if the original wavelength were made twice as long. The same physical

aperture at two different wavelengths can be moaeled by two different

computer apertures of linear dimensions inverse to the wavelengths.

36



fl42-3

Fi~gure 5,.AT of ful 64 equae ptte

37



M42-4

2Figure 6. PSF of full 64 square aperture.
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Figure 7(a). MTF of random array of 12.5% of 64 2elements. Central 64 2
plotted.
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3

Figure 7(b). MTF of random array of 12.5% of 642 elements. Central
642 plotted peak clipped.
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Figure 8. MTF of 100 element (2.44%) random array shown in one ,
quadrant.
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Figure 9. PSF of random array of 12.5% of 642 elements.
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Figure 10. MTF of 25-element nonredundant array.
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This is because the physical diffraction angles are determined by the

uatio of physical aperture to wavelength. If everything else is physically

constant, red light, for example, would have less resolving power than blue.

The sizes of the individual elements in the various apertures we used

were kept constant at a single element and positioned at the same relat:ýve

location while the size of the total aperture was varied. This correctly

models the covistancy of field of view with changing wavelengths. Each

image was revormalized to 8 bits to achieve constant antenna efficiency as

a function wavelength. Uniform spectral illumination was assumed in this

study.

For the case of partially coherent imaging, the simulation makes .ise

of the specially construicted separable coherence functions described in

Section 2.A.3. An arbitrary coherence function may be approximated in

this fashion. But if it is not so represented, in separable form, the

general four-dimensional convolutions or Fourier transforms that would

then be needed would far exceed the computer storage available for 1282

size images. The computer simulation previously used for coherent andH
incoherent imaging was modified to accept our separable partially coherent

model. A block diagram of this simulation is shota in Figure 11. The

procedure is to input an image of 128 x J.28 pixel.s, represented by their

when speckle modeling is desired, converted to a complex number withitntyvle.Tesuerotfeahnestyal stkn and

random phase factor. This gives us a model for the complex disturbance

image. This image was then multiplied by each teri~ in the separable
representation of the degree of coherence function JA (Eq. 22), and the

Fourier transform was taken of each resultant term. Appendix C gives

an example of the terms of such a separable representation fi:r VJ. Each

term is then multiplied by the optical transfer function for the aperture

followed by the inverse transform. The resulting image terms were then

squared and added to obtain the output intensity image. Since only the

image intensities are of interest, no cross terms are computed, and thus

neither the degree of coherence nor mutual coherence of the output image

was computed. By this means, the impossible burden of extreme storage

needed f or four-dimensional computation was transformed to a tractable

but lengthy and expensive one.
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The aperture configuration used in the simulations is generated

straightforwardly. A regular array is generated by setting the antenna

element coordinates of a predetermined regular pattern to 1 and the

remaining array positions to 0. Generally, a square aperture array coiL,

figuration was used. For the random array, a random number generator is

used to produce the sequence of numbers used as cuordinates of the random
array elements. Each pair of random numbers forms the (x,y) coordinates

of an array element. The random number generator is normalized so that

the range of numbers generated falls within the limits of the aperture
size chosen.

Additional optional system parameters are available to include in

the simulation studies to determine the effect of these parameters on

image quality. These include a Poisson noise generator, a Gaussian

noise generator, and an atmospheric turbulence generator. The noise

generators were used to determine the effect of S/N on image quality for

both regular and random array imaging. The turbulence generator was used

to determine the immunity, if any, of random arrays to atmospheric

turbulence. Finally, there are several options available to oucput the

reconstructed image on disk for display. Either floating point f-rmat

or integer format is available, with the latter form normalized to

3-bits over the dynamic range of the reconstructed image to display it

on gray-scale displays. Options to output the aperture configutrign

and OTF on disk are also available.

E. RESULTS OF THE SIMULATION STUDIES

Both incoherent, coherent, and partially coherent cases were

simulated for monochomatlc illumination. Polychromatic incoherent imaging
was simulated as well. In theee studies, the input image (object) used
was a transparency digitAzed to 8 bits (24 dB) of dynamic range and con-

taining a high background intensity level. This image was digitized to a

128 x 128 pixel array, the limitation on the size of the array being

imposed primarily by the core space available in c

of the largest full aperture wachu3en to be 64 x 64 elements centered

in the aperture array. With this full array size, the resolution element
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in the input image is 2 x 2 pixels in size. A total of 642 64 x 64 -

128 x 128/2 x 2 4096 resolution elements are therefore produced in the

full array's FOV. From 128 to 2048 elements were used in the random array
simulation studies, corresponding to 3% and 50%, respectively, of the

number of full array elements. All random arrays gea.erated in the studies

were confined within the 64 x 64 aperture boundary of the fuil array.

Figures 12 through 16 show the results of incoherent imaging with

thinned ran-om arrays. Included in each figure are the object and the

full aperture diffraction-limited image. These are shown for comparison

with the random array images. Figures 17 through 18 show, the results of

coherent imaging with thinned random arrays; the corresponding full array

image is iftcluded for comparison. Because of the onset of speckle effects

in coherent imaging, an additional parameter, the number of overlays,

is introduced. The effects of speckle can be reiduced by speckle averaging,

in which reconstructed coherent images with different speckle patterns

are added to "smooth out" the individual speckle patterns. The coherent

images are shown as a function of the number of overlays used for speckle

averaging.

Figure 19 compares full and random arrays for incoherent imaging in

the presence of turbulence. Figures 20 through 25 show the results of
polychromaticincoherent imaging with thinned random arrays and with the

corresponding full array images for comparison. Partially coherent

imaging was successfully simulated by modeling the coherence in terms of

totally separable functions to avoid four-dimensional transforms, which !
would have exceeded the storage capabilities of our computer. Never-

theless, tne large computational burden precluded more than a cursory

exawination of the problem. A single partially coherent image required

1 hr of CPU on a PDP KL-10 with a Tenex operating system. Partially

coherent, fully coherent, and incoherent images are shown in Figure 26.

1. Incoherent Imaging

The image quality achievable with random arrays thinned to

only 12.5% of the number of full aperture elements is shown in Figure 12.

Four different configurations of random arrays were arbitrarily chosen,
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7616-5
REGULAR ARRAY RANDOM ARRAY
(4096 ELEMENTS) (2048 ELEMENTS)

(a)NO OVERLAY (b)

(c) 3 OVERLAYS (d)

i4i

n*

(e) 10 OVERLAYS(f

Figure 17. Coherent imaging.
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REGULAR ARRAY RANDOM ARRAY
(4096 ELEMENTS) (2048 ELEMENTS)

(g) ~50OVIERLAYS(h

(j) ~100 OVERLAYS()

Figure 1.8. Coherent imaging.
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REGULAR ARRAY RANDOM ARRAY
(4096 ELEMENTS) MODERATE TURBULENCE (512 ELEMENTS)

ia)PHASE SCREEN NO. I (b)

(c)PHASE SCREEN NO. 2 (d)
SEVERE TURBULENCE

(e) PHASE SCREEN NO. 2 U

Figure 19. Incoherent imaging in presence of atmospheric turbulence.
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MONOCHROMATIC DIFFRACTION LIMITEDMOCHMAIIAGFRMANM
FULL APERTURE IMAGE ARRAY NO. 1

25% OF FULL APERTURE IMAGE

ORIGINAL OBJECT MONOCHROMATIC IMAGE FROM
RANDOM ARRAY NO. 2
25% OF FULL APERTURE IMAGE

Figure 20. Incoherent monochromatic imaging.
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8103-2

MONOCHROMATIC DIFFRACTION LIMITED RANDOM APRtAY NO.1I
FULL APERTURE IMAGE 25% OF FULL APERTURE IMAGE

FULL APERTURE IMAGE RANDOM ARRAY NO. 2
26% OF FULL APERTURE

Figure 21. Incoherent polychroma~tic imaging,bandwidth
span factor 1.14.
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8106-3

MONOCHROMATIC DIFFRACTION LIMITED RANDOM ARRAY NO. I
FULL APERTURE IMAGE 25% OF FULL APERTURE IMAGE

FULL APERTURE IMAGE RANDOM ARRAY NO. 2
25% OF FULL APERTURE

Figure 22. Incoherent polychromatic imaging, bandwidth
span factor 1.33.
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8108-4

MONOCHROMATIC DIFFRACTION LIMITED RANDOM ARRAY NO. 1
FULL APERTURE IMAGE 25% OF FULL APERTURE IMAGE

FULL APERTURE IMAGE RANDOM ARRAY NO. 2
25% OF FULL APERTURE IMAGE

Figure 23. Incohercnt polychromatic imaging, bandwidth
span factor 2.00.
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8842-14

a) MONOCHROMATIC DIFFRACTION b) POLYCHROMATIC IMAGE FULL
LIMITED IMAGE FULL 642 ARRAY ARRAY BANDWIDTH FACTOR TWO

c) MONOCHROMATIC IMAGE RANDOM d) POLYCHROMATIC IMAGE RANDOM
ARRAY 12.5 %OF FULL APERTURE ARRAY 12.5 %OF FULL ARRAY

BANDWIDTH FACTOR TWO

Figure 24. Polychromatic incoherent imaging, 100% and 12.5% of full

array, bandwidth span' factor 2.00.
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8842-13

II

a) MINOCHROMATIC IMAGE RANDOM b) POLYCHROMATIC IMAGE RANDOM
ARRAY 6.25 % OF FULL APERTURE ARRAY 6.25% OF FULL APERTURE,BAN DWI DTH FACTOR TWO

A-i i I

c) MONOCHROMATIC IMAGE RANDOM d) POLYCHROMATIC IMAGE RANDOM
ARRAY 3.125 % OF FULL APERTURE ARRAY 3.125 % OF FULL APERTURE

BANDWIDTH FACTOR TWO

Figure 25. Polychromatic incoherent imaging, 6.25%' and 3.125%
of full array, bandwidth span factor 2.00.
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8842-12 (a)

9

le I
1:i

a) COHERENT 642 FULL ARRAY

Figure 26. Partially coherent imaging.
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SC42-12 (b)

b) INCOHERENT 64FULL ARRAY

Figure 62. (Continued)
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c) PARTIALL COHERENT C>42
FULL ARRAY

Figure 62. (Continued)
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each containing 512 elements. The full, array is composed of 4096 elements.

The four aperture configurations were generated by using the first four

sequences of random numbers produced by the random number generating rou-

tine. High signal-to-noise ratios were used in this simulation to isolate

the thinning factor effects from the noise effects in degrading image

quality. The image quality achievable with random arrays thinned to 12.5%
of te fll rraycomare fevraby wth he qaliy ahievblewit th

* full diffraction-limited array.

one advantage of random arrays is that the image quality does not

suffer catastrophic degradation when a large fraction of Lbe array ele-

ments fails (see Section 1). The graceful degradation of random array

images when large fractions of array elements are re~moved is shown in

Figure 13. Here, the random array elements were removed randomly, with

50% of the elements removed each time. Starting at 1024 elements in a

random array thinned to 25% of the full array number, Figure 13(b,c,e,f)

represents random arrays thinned to 25%, 12.5%, 6.25%, and 3.125% of the

full array. In each case, when random arrays with fewer elements are

created, these arrays are subsets of the previous larger arrays. An

examination of the random array images in Figure 13 shows that there is

no drastic change in image quality until thinning has been reduced to

below the 5% level (Figure 13(f)). High SIN conditions also prevailed

in this sequence of simulations.

Another advantage of thinned random arrays (one men~tioned previously)

is that system resolution can be increased dramatically with the same

number of array elements in use. All that is necessary is to spread the

fixed number of elements over a larger aperture area. This is vividly

depicted in Figure 14. A 400-element full array was used as a reference

for comparison. The resolution achievable with a full 400-element array,

with aperture size of 20 x 20 pixels, is shown in Figure 14(a). Merely

redistributing the 400 elements onto larger size aperture limits, as was

done in Figure 14(b~c), significantly improved resolution witheitt notice-

ably degrading image quality. Here, a threefold increase in resolution

was achieved (see Figure 14(a and c)). For a comparison of image quality,

full array diffraction-limited images corresponding to the increased
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aperture sizes are shown in Figure 14(ef). These two full arrays were

comprised of 1936 and 4096 elements, respectively.

Figures 15 and 16 show the effect of low SIN ratio conditions on image

quality. A Gaussian noise spectrum was added to each array element to

simulate the effect of receiver noise. The variance of the Gaussian

spectrum was adjusted relative to the average intensity of the Fourier

components to produce the S/N ratios shown. Figures 12(c, d) and

13(c, d) represent the image quality obtained from random arrays with

512 elements (12.5% of the full array) for the S/N ratios shown. The

corresponding full array ii,. ' dentical S/N ratios are shown below

each random array image. For i/Y ratios above 3, the random array image

quality differs little ¾ ,m the lull array images.

2. Coherent Imaging

Results of the computer simulation studies of coherent imaging with

random and regular arrays are shown in Figures 17 and 18. In this

sequence of simulations, the number of overlays is varied to determine

the effect of speckle averaging on image quality. In each figure, the

random array images are shown on the right side, with the corresponding
full array images shown on the left. An aperture size of 64 x 64 pixels

is used, and the random array was thinned to 50% of the number of full

array elements. A high S/N ratio prevailed in these simulations.
For the coherent imaging case, the OTF is the aperture configuration

itself. Therefore, when an element of the array is removed, as in a

thinned array, the spatial frequency corresponding to that array element

is not sampled at all.

Speckle effects severly degrade image quality. For the random

array used, speckle effects still are prominent even after 100 overlays,

while for the full array, speckles can be significantly removed at 100
P. overlay7. For lower numbers of overlays (e.g., less than 10 in this

case), the speckles are quite severe in both situations.
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3. Turbulence Effects

The effect of atmospheric turbulence on image quality obtainable

from random and regular array incoherent imaging is shown in Figure 19

for which a random array thinned to 12.5% of the full array elements was

* used. Turbulence levels ranging from moderate to severe were usee#. The

random array images are again shown on the left column and the full array

images on the right. The image quality obtained with the 12.5% random

arrays is degraded more severely than the corresponding full array images.

For moderate turbulence levels (aoe 0.5), the difference in image quality

is slight between the random and full arrays for higher levels of turbu-

lence, but since images are severely degraded anyway, comparisons between

them are less meaningful. There seems to be no evidence from this experi-

ment to support the idea that the phase aberration immunity for thinned

random arrays, discussed in Section 2.C, is of any value for images of

this class.

4. Polychromatic Incoherent Imaging

The results of our computer simulation studies of polychromatic

incoherent imaging with random arrays are summarized below. Tyyical

results are shown in Figures 20 through 25. In these studies, the object

used was a digitized photograph with 8 bits (24 dB) of dynamic range; it

contained a high background intensity level. The image was digitized to

a 128 x 128 pixel array. The size of the full aperture for the short

wavelength limit of the polychromatic bandwidth was chosen to be 64 x 64

elements, thereby producing 4096 resolution elements in the system FOV at

this wavelength. In every polychromatic composite average, the percentage

of the number of elements of each monochromatic component is kept fixed

rather than the number of elements. The number of elements used in the

random array simulation studies ranged from 1024 to 32 elements, cor-

responding to, in separate studies, from 25% to 3.125% of the number of

2 2full array elements for apertures varying from 64 to 32 in dimension.
This range corresponded to a factor of two in wavelength. Each figure

(20 through 24) includes the monochromatic diffraction-limited 64 2full

aperture image. This is shown as a ref erence for comparison.
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Figure 20 shows two images found with two different random arrays

each thinned to 25% of the 64 2aperture, giving 1024 elements. These are,

of course, monochromatic images and show no appreciable degradation due to

thinning.

Figure 21 compares the polychromatic images found by averaging full
* 2 2

arrays of 64 and 56 elements with those from two different 25% thinned

arrays of the same dimensions. The effect of combining the two simulated

wavelen6-hs is very small, and the effects of thinning are entirely neg-

ligible. In Figure 22 similar results are seen for arrays of dimension

22 2 2 2 2
In Figure 23 for arrays of dimension 64 ,562, 48 402,ad3

which 'represent a span of a factor of two in wavelength or bandwidth,

the effects of averaging the more blurry long wavelength image with the

sharper short wavelength image are more noticeable. But the effects of

thinning the full array are still negligible.

Figure 24 again shows a monochromatic diffraction-limited 64 2 full

aperture image as a new reference for comparing this and the next figure,

Figure 25. In Figure 24(a), a more continuous polychromatic image is

shown; it was generated fromR 10 different monochromatic full array over-

lays spanning a bandwidth factor of two in the array sizes of from 642 to
2

32 . A slight lass of resolution may be noted in comparison to the short

wavelength monochromatic image in Figure 24(a). In Figure 24(c), the

monochromatic image was produced with a random 12.5% of the short-
2wavelength (64 ) aperture. Some small degradation in comparison with

the full-array image can be noted. The polychromatic image, Figure 24(d),

although showing less resolution than Figure 24(c), does not show, for

example, the ghosting evident in the background.

A similar comparison is made in Figure 25(a and b) for thinning to .
6.25%. The degraded short wavelength (642)mncrmtc mg fFg

ure 25(a) is compared to the polychromatic version of bandwidth factor

two in Figure 25(b). The severly degraded 3.125% short wavelength (642

monchromatic image of Figure 25(c) is very much improved in the polychromatic

factor two bandwidth version in Figure 25(d).
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5. Partially Coherent Imaging

The effects of partial coherence on image formation were studied

by employing separable monochromatic partial coherence functions of the

kind illustrated in Figure 2. In one set of experiments, speckle

formation was studied as a function of the degree of coherence. As was

expected, the variance of the speckle distribution function decreased as

the coherence was reduced. The dramatic difference between coherent and

incoherent imaging may be seen by comparing Figure 25(a) with Figure 26(b),

respectively. The coherent picture, without any added random phase,

displays the vivid edge "ringing" expected from the diffraction of sharpI

boundaries. This can be noted in the border of the picture in the face

of the subject, and along the right side of the subject's hair. The

incoherent image, Figure 26(b), shows no obvious comparable effects. The

partially coherent image, Figure 26(c), using the 121-term separable

conherent function plotted in Figure 2, shows an intermediate degree ofA

diffraction effects. These effects properly are somewhat exaggerated

when discrete as opposed to continuous arrays are employed (as noted in

Appendix B).
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SECTION 3

SUMMARY OF RESULTS

The results from the computer simulation studiee' of random array

iniaging suggest that random arrays are primarily useful for incoherent

imaging applications. The advantages of random array imaging for inco-

herent imaging are

Large degree of thinning possible. In this study, we have shown
that random arrays thinned to less than 6% of the number of
full array elements (4096) produce incoherent image quality '
comparable to the full array diffraction-limited image quality.
The degree of thinning allowable is, in principle, inversely
proportional to the square root of the number of elements in
the full array, which number is equivalant to the number of

elements resolved by the~ full array in its field of view.

Polychiromatic radla.tion. Thinning to 3% was shown to be
similarly effective in th'e case of broadband-.'with polychromatic
imaging.

Easy to design. Many random array configurations produce image
qualities comparable to full array diffraction-limited quality.
The probability of success canL be estimated for choosing an
array.

Graceful degradation. The image quality obtainable fromI random arrays does not suffer catastrophic degradation when
large fractions of array elements are removed. The image
quality degrades very gracefully,

Increased resolution with fixed number of array elements.
The resolving capability of random arrays can be increased
significantly using the same number of array elements. This
is accomplished by merely redistributing the array elements
over a larger aperture size.

Partially coherent imaging proved extraordinarily expensive to

simulate, but a separable version of the coherence function was modeledI that allowed a cursory examination of the problem. As expected, the
behavior of partially coherent images was qualitatively between the

coherent and incoherent extremes.
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For incoherent imaging in turbulent conditions in the atmosphere,

thinned random arrays suf~fer only slightly in image quality when compared

to full array images for a large range of turbulence levels. For lover

turbulence levels, the difference in image quality is slight, although

the random array images were more degraded. For higher turbulence

levels, both arrays suffered severe degradations, and the comparison of

* image quality under those circumstances is less meaningful.
i For coherent imaging applications, random arrays do not offer sig-

nificant advantages over full arrays. This is because speckle effects can-

not be reduiced enough by speckle averaging (or overlays), and substantial

degradation of imag-.' quality still remains after numerous overlays.
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APPENDIX A

RANDOM ARRAY DESIGN THEORY

There is a body of microwave antenna lite'- re dating from the

1960s describing the theoretical expectations iarge antenna arrays

with randomly spaced elements. The tradeoffo between resolution, gain,

and sidelobe level have been analyzed in probabilistic terms. These

ideas have been experimentally tested, and the results were favorable.

Comparisons were also made between relative efficacy of antennas

designed algorithmically and those designed by random placement of the

elements; the latter showed remarkable advantages. This appendix

briefly summarizes some important points from the work of Lo.

The sidelobe level is related to the number of elements and only

slightly to the aperture dimension. High resolution can be obtained

with few elements, and, for a given number of elementd, high resolution

can be obtained by spreading these elements without a substantial change

in the sidelobe level or the directive gain.

The probability of a sidelobe level below r is [I - exp(-Nr 2 )] 4a

where N is the total number of elements, a is the aperture dimension

measured in wavelengths, and r is the sidelobe level with the mainbeam

normalized. Figure A-i is a universal plot of:this relationship plot-

ting probability versus rv¶ for a variety of aperture dimensions indexed

by q - lOglo a. For planar arrays, q is equal to the sum of q, and q2"

This family tells the probability of finding ("designing") a random

array with a specified maximum sidelobe level for a given aperture and

number of elements. Figure A-2 demonstrates the nearly perfect agree-

ment between the probabilistic theory and a computer simulation with

randomly positioned antenna arrays.

1Y.T. Lo and R.J. Simcoe, IEEE Trans. Ant. and Prop., Vol. Ap-15, No. 2,

March 1967, pp. 231-235.
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741W2

1.0

0.9

0.8I

0.7

S0.6

-I,

~0.5 lf 3* e S

0.2

0.2

0.1

0
1 2 3 4 5 6 7 8

Figure A-I. Theoretical distribution curves for rlN', where N = total
number of elemenits, and r - sidelobe level. In the case
of a linear array, q - logl 0 (array length in wavelengths);

in the case of a planar array, q - loglo (aperture area
in wavelengths squared).
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1.0

0.9

0.2 THEORETICAL

0.7 EXPERIMENTAL

-j

00.4

0.3

0.2

0.1

-18 -17 -16 -15 -14 -t3

SIDELOBE LEVEL, dB

Figure A-2. 4
Comparison of the theoret'cal and experimental
distributions for the sidelobe levels of linear
arrays. The experimental distribution is
obtained from 180 pseudo-random linear arrays
generated by two planar arrays.
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APPENDIX B

DIFFRACTION EFFECTS IN DISCRETE COHERENT IMAGES

The gernerdl effects of diffraction in coherent images are well

known but there are novel striking effects when the arrays are discrete

rather than cotttinuous. Especially strong symmetric effects can be I
seen when the imaging array is full and the number of elements in the I
array and in tilt object is commensurate. In Figure B-I, the coherent

images of a 64 bright uniform object produced by four different full
arrays are shown. In Figure B-1(a), a 642 used,and 162

bright crossed lines appear in the image. In Figures B-1(b), B-1(c),

and B-1(d), 72J 8 , and 9 full apertures were employed, respectively.

The four bright corners in the images are much more distinct in the case

of the 82 aperture,which is, of course, commensurate with 642. The

diffraction effects of the 642 aperture can be noted in the coherent and

partially coherent images in Figure 26.

I
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884' -11

a) 642 b72

c) 82 d) 92

Figure B-i. Diffraction effects in coherent imaging with discrete
arrays. Images at a 642 uniform object with full
apertures of sizes: a) 642, b) 72, c) 82, d) 92.
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APPENDIX C

SEPAMABLE REPRESENTATION OF THE DEGREE OF COHERENCE FUNCTION

Let (X,Y) be the pixel location of the vector U in Eq. 22.

-9 -9 -
A° - 126 x 2 4, 2 120 x 2 A - 10 x 2 9

o2 4

A 1 - 210 x 2- 9  A3 - 43 x 2-9 A5 - 2- 9 tn Eq. 21.

- 2-6

The N - 121 terms for each f in Eq. 22 are:

(1) A (18) sin(2Y) 4 AA
0 o 2

(2) cos(X) / (19) sin(3Y) * ,2A A

(3) cos(2X) " (20) s ri (4Y) r -AAo 2 o 4

(4) cos(3X) • 2.AA (21) sin(5Y) •/2AA

(5) cos(4X) ° A (22) cos(X-Y) "
o 4 1,

(6) cos(5X) r A-A. (23) cos(X-2Y) •A A,

(7) sin(X) 42 A (24) cos(X-3Y) r A3
ol 1 3

(8) sin(2X) " 2AoA- (25) cos(X-4Y) "A A.
o 2 1 4

(9) sin(3X) " 2AA (26) cos(X-5Y) " A A
o 3 1 5

(10) sin(4X) r2AoA. (27) cos(2X-Y) " A 2A

(11) sin(5X) " A * (28) cos(2X-2Y) /A!
o 5

(12) cos(Y) " 7 (29) coa(2X-3Y) " Ai73

(13) cos(2Y) " 2AA2 (30) cos(2X-4Y) r
o 2 2 4

(14) cos(3Y) • A- (31) cos(2X-5Y) A2A-
o 3 2 5

(L5) cos(4Y) " 2VoA44 (32) cos(3X-Y) 'AA•
o 4 3 1

(16) cos(5Y) 52AoA- (33) cos(3X-2Y) _A3_2

(17) sin(Y) • r (34) cos(3X-3Y) /3
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(35) cos(3X-4Y) - T 4(59) sin(3X-3Y) -9 =ii(36) cos(3X-5Y) 0 A3A5  (60) sin(3X-4Y) v34
(37) cos(4X-Y) av'A 4 A (61) sin(3X-5Y) - W 3 -A5

(38) cos(4X-2Y) /A4A (62) sin(4X-Y) - 4=1

(3)cos(4X-3Y) .A4A (63) sin(4X-2Y) *A

(40) cos(4X-4Y) ,'A-ý4A (64) sin(4X-3Y)43

(41) cos(4X-5Y) /'A4 5  (65) sin(4X-4Y) /ATA

(42) cos(5X-Y) 0 r--l (66) sin(4X-5Y) I1A4A5

(43) cos(5X-2Y) /A5A2i (67) sin(5X-Y)

(44) cos(5X-3Y) /AK(68) sin(5X-2Y> rA5A2 -
(4) os5XA 5)A 4  (69) sin(5X-3Y) 49___

(45) cos(5X-5Y) rA-, 9A

(46) cn(5X-5Y) v(70) sin(5X.-4Y) *,AA

(47) sin(X-2Y) /A-;2 (71) csn(SX-Y)

(48) sin(X-2Y) 0 4A 2j (72) cog (X+2Y) 5
3 T2

(49) sin(X-4Y) * Y'A1A3 74 cos(X+2Y) V'A1A2  i

(51) sin(X-4Y) vTT(74) cos(X+3Y) * ,A 3

(52) sin(2X-Y) trA2A1  (76) cos(X+5Y) _____5

(53) sin(2X-2Y) /'A7 2A (77) cos(2X+Y) I-AT,
(54) sin(2X-3Y,) vA-A3  ',78) cos(2Y+2Y) FAA

(56) sin(2X-5Y) /A AT (80) cos(2X+4Y) _____4

(57) sin(3X-Y) 'A AT (81) cos(2X+5Y) _____5

(58) sin(3X-2Y) - A 32  (82) co's(3X+Y) /A-T,

A

80



(83) cos(3X+2Y) 9 3'= 2 (103) sin(2X+2Y) -/=

(84) cos(3X+3Y) (14 T- I~3y
3 3 2 3

(85 4o(X4) vK (105) sin(2X+4Y) -/
(86) coo(3X+5Y) (16#i(2+y

*(67) cos (4X+Y) VA.A (107) sin(3X+Y) '

3 1
(88) cos (4X+2Y) " ' -2(08)' i(X2) ' A

(89) cos(4X+3Y) 5 (109) sin(3X4-3Y) rA--

(90) COB (4X-t4Y) - yA-4A, (110) sin(3X+4y) /A-A

(91) cos(4X+~5Y) * -A (111) sin(3X+5Y)' rA_ --A4 5 3 5
(92) cos (5x+y) / A.(112) sin(4X+Y)

(3 o(X2)5A2(113) sin(4X+2Y) 'vAA

(94) cos(5X+3Y) AT3 (114) sin(4X+3Y) - -
/4 3

(95) cos(5X4-4Y) 5 (11-5) sin(4X+4Y) - V'A-4A4

(96) cos(5X+5Y) *(16 n4X5)IASr 5 416 i(X5) vA,5
(97) sin(X+Y) vrA-.A (117) sin(5X+Y)11 51

(98) sira(X+2Y) VA---(118) sin(5X+2Y) vrA
1 2 52

(99> -siri(X+3Y) /A.--(119) sin(5X+3Y) rAA
(100) sin(X+4Y) /A..(120) siri(5X-i4Y) 51 4 54
(101) sin(X+5Y) AA5(121.) sitk(5X+5y) rA

1~5 55
(102) sin(2X-iY)
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